GN-231

III Semester B.A./B.Sc. Examination, December - 2019
(CBCS) (Semester Scheme) (F+R) (2015-16 and Onwards)

MATHEMATICS - III

Time : 3 Hours

Max. Marks : 70
Instruction: Answer all questions.

PART - A

Answer any five questions.

1. (a) Write the order of the elements of the group $\left(Z_{4}, t_{4}\right)$.
(b) Find all right cosets of the subgroup $\{0,3\}$ in $\left(Z_{6}, t_{6}\right)$.
(c) Show that the sequence $\left\{\frac{1}{n}\right\}$ is monotonically decreasing sequence.
(d) State Cauchy's root test for convergence.
(e) Test the convergence of the series :

$$
1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots \ldots \infty
$$

(f) Evaluate $\lim _{x \rightarrow \infty} x \cdot \sin \left(\frac{1}{x}\right)$.
(g) State Cauchy's mean value theorem.
(h) Evaluate $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$.

PART - B

Answer one full question.
2. (a) If a and b are any two arbitrary elements of a group G, then prove that $\mathrm{O}(\mathrm{a})=\mathrm{O}\left(\mathrm{b}^{-1} \mathrm{ab}\right)$.
(b) If G is a group of fourth roots of unity and H is a subgroup of G , where $H=\{1,-1\}$ then write all cosets of H in G. Verify Lagrange's theorem.
(c) State and prove Fermat's theorem in groups.

OR

3. (a) If a is a generator of a cyclic group G then prove that a^{-1} is also a generator.
(b) In a group G, if $\mathrm{O}(\mathrm{a})=\mathrm{n}, \forall \mathrm{a} \in \mathrm{G}, \mathrm{d}=(\mathrm{n}, \mathrm{m})$, then prove that $\mathrm{O}\left(\mathrm{a}^{\mathrm{m}}\right)=\frac{\mathrm{n}}{\mathrm{d}}$.
(c) If G is a finite group and H is a subgroup of G then prove that order of H divides the order of G.

PART - C

Answer two full questions.
4. (a) If $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{a}_{\mathrm{n}}=\mathrm{a}$ and $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{b}_{\mathrm{n}}=\mathrm{b}$, prove that $\lim _{\mathrm{n} \rightarrow \infty} a_{n} \cdot b_{n}=a b$.
(b) Discuss the nature of the sequence $\left\{\begin{array}{l}1 / n\}\end{array}\right.$
(c) Test the convergence of
(i) $n[\log (n+1)-\log n]$
(ii) $1+\cos n \pi$
5. (a) Prove that a monotonic decreasing sequence which is bounded below is
convergent.
(b) Show that the sequence $\left\{a_{n}\right\}$ defined by $a_{1}=\sqrt{2}$ and $a_{n+1}=\sqrt{2 a_{n}}$ converges to 2 .
(c) Examine the convergence of the sequence :
(i) $\left\{\frac{1+(-1)^{n} n}{(n+1)}\right\}$
(ii) $\quad(2 n+3) \cdot \sin \left(\frac{\pi}{n}\right)$
6. (a) Discuss the nature of the geometric series $\sum_{n=0}^{\infty} x^{n}$
(b) Test the convergence of the series :
$1+\frac{1}{2}+\frac{1 \cdot 3}{2 \cdot 4}+\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}+\ldots \ldots$.
(c) Sum the series to infinity

$$
\frac{1}{7}-\frac{1 \cdot 4}{7 \cdot 14}+\frac{1 \cdot 4 \cdot 7}{7 \cdot 14 \cdot 21}-+\ldots \ldots .
$$

OR

7. (a) State and prove Raabe's test for the convergence of series of positive terms.
(b) Discuss the Leibnitz test on alternating series $\sum(-1)^{\mathrm{n}-1} \mathrm{a}_{\mathrm{n}}$
(c) Sum the series to infinity $\sum_{n=1}^{\infty} \frac{(n+1)(2 n+1)}{(n+2)!}$

PART - D

Answer one full question.
8. (a) State and prove Lagrange's mean value theorem.
(b) Test the differentiability of $f(x)=\left\{\begin{array}{l}1-3 x, x \leq 1 \\ x-3, x>1\end{array}\right.$ at $x=1$.
(c) Expand $\log _{e}(1+\cos x)$ upto the term containing x^{4} by using Maclaurin's series.

OR

9. (a) Prove that a function which is continuous in closed interval takes every value between its bounds atleast once.
(b) Expand $\sin x$ in powers of $\left(x-\frac{\pi}{2}\right)$ by using Taylor's series expansion. Hence find the value of $\sin 91^{\circ}$ correct to 4 decimal places.
(c) Evaluate :
(i) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\log (\sin x)}{\left(\frac{\pi}{2}-x\right)^{2}}$
(ii) $\lim _{x \rightarrow 0}\left(\frac{\mathrm{a}^{x}+\mathrm{b}^{x}+\mathrm{c}^{x}}{3}\right)^{1 / x}$
